EE 508
Lecture 14

Statistical Characterization of
Filter Characteristics



Review from last lecture

Effects of manufacturing variations on components

—1+ J
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» Arigorous statistical analysis can be used to analytically predict how
components vary and how component variations impact circuit
performance

/|

» Monte Carlo simulations are often used to simulate effects of component
variations
Requires minimal statistical knowledge to use MC simulations
Simulation times may be prohibitively long to get useful results
Gives little insight into specific source of problems
Must be sure to correctly include correlations in setup

» Often key statistical information is not readily available from the foundry



Review from last lecture
Modeling process variations in semiconductor processes

AAAN
R

X= XNOM Txreroc PXrwarer TXroie TXRLcrRAD TXRLVAR

XRPROC> xRWAFER, XRDIE» *RLVAR Often assumed to be GaUS|an W|th Zero mean

Magnitude of xg grap IS Usually assumed Gaussian with zero mean, direction
is uniform from 0° to 360°

GPROC >> GWAFER >> GDIE
GDIE >> O-LVAR

Opie >> G|GRAD|
1

O;var  Strongly dependent upon area and layout Trvar = JArea
o,z ~ Perimeter

Relative size between 0,4, and 0,grap dependent upon A, P, and process



Review from last lecture .
Modeling process variations in semiconductor processes

AAAN
R

Statistics associated with value of dimensioned parameters (poles, GB,
SR,R,C,transresistance gains, transconductance gains, ... dominated by

XRPROC)

Statistics associated with matching/sensitive dimensionless parameters
such as voltage or current gains, component ratios, pole Q, ... (almost

always closely placed) dominated by xg, grap @Nd xgyar (Pecause locally xgproc,
Xrwarer, Xroie are all correlated and equal)

Gradients are dominantly linear if spacing is not too large

Special layout techniques using common centroid approaches can be
used to eliminate (or dramatically reduce) linear gradient effects so, if
employed, matching/sensitive parameters dominated by xg,\ar but
occasionally common centroid layouts become impractical or areas
become too large so that gradients become nonlinear and in these cases
gradient effects will still limit performance

Higher-order gradient effects can be eliminated with layout approaches that
cancel higher “moments” but area and effort may not be attractive



Review from last lecture

Statistical Modeling of dimensioned parameters

Example:

Determine the standard deviation of the pole frequency (or band edge) of
the first-order passive filter.

X Vour

AY

!

Assume the process variables are zero mean Gaussian variable
with standard deviations given by

=02 o, =01

RN oM CN oM

Assume further that the effects of all other random components can be neglected

X = Xiom Freroc Tawmeer Torbe T PResar

O

RRPR ocC



Review from last lecture

Statistical Modeling of dimensioned parameters

Example (cont):

Determine the standard deviation of the pole frequency (or band edge) of
the first-order passive filter.

N Vour
1

Vin ~ C p= RC

Assume the process variables are zero mean Gaussian variable

with standard deviations given b

WeNLY 5, =02 o, =0.1

RPROC RPROC

RNOM CNOM

R = Ryom*Reroc C = Crnom*Crroc

1 1

RNOM +RPROC ) (CNOM +CPROC ) RNOMCNOM + RNOM(:PROC + CNOMRPROC + RPROCCPROC

"

* pis a multivariate random variable

» The pdf of p is extremely complicated



Review from last lecture

Example (Cont): Determine the standard deviation of the pole frequency

(or band edge) of the first-order passive filter.

= Vour

N
~ C P"Re

3|

Theorem: The sum of uncorrelated Gaussian random variables is a
multivariate Gaussian random variable

Theorem: If X, ... X, are uncorrelated random variables with standard
deviations 04, 0,, ... 0,,, and a,,a,, ... a,, are constants, then the standard

deviation of the random variable ¥ = Z‘aixi Is given by the expression

m

2 2

Oy = \/zai O
i=1




ewewf last | Cture
ampe con

Determine the standard deviation of the pole frequency
(or band edge) of the first-order passive filter.

Vin

A}

Cnowm 47

Pnom

~/0.2? +0.1> = 0.22 I



Review from last lecture

R Vour 1
Vin ~ C P~ Re
’ o, =4022+0.1> =0.22

Pnom

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

8,0= 2For (0.45)-1

prob

0, .= 20.6736—-1=0.347

prob

Thus, approximately 35% of the wafer lots will
have a pole within 10% of the nominal value

A




Review from last lecture

R Vour 1
Vin ~ C P~ Re
’ o, =4022+0.1> =0.22

Pnom

3. What can the designer do to tighten the band edge of this filter?



Modeling process variations in semiconductor processes

ANAAN
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» Most characteristics of interest in a filter (and many other circuits) are highly
nonlinear functions of multiple random variables

» Closed-form analytical expressions for pdf is often extremely difficult to
obtain

« For most practical circuits, random component is small compared to the
nominal component

« Linearization of characteristics of interest for purpose of statistical analysis is
usually quite accurate and drastically simplifies analysis

« Monte Carlo analysis is widely used for statistical characterization but is
often very time consuming and gives little insight into design optimization



Statistical Modeling of Dimensionless Parameters

Rz
R1 — AN —

<|7_V\/\\/‘/— ‘:> | Vour K=1+E—j

R1 R1a
WA Vout Voura AV
vin (& Ci1 ~~Cia (E)Via
S S~
1 1
- Pa
P RC 5= PA-P; RiaCia



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
R1 — AN —

L Vour K=1+F:Tf

IN

Determine the standard deviation of the voltage gain K

Determine the yield if the nominal gainis 10 £1%

Assume a common centroid layout of R, and R, has been used and
the area of R, is 100u? and both resistors have the same resistance
density and R, is comprised of K-1 copies of R, . Neglect variable
edge effects in the layout

Assume also that:  A,=.01um o =0.2

RPR ocC
RN OM

A, is the Pelgrom matching parameter



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
R1 — AN —

L Vour K= 1*%

IN

Determine the standard deviation of the voltage gain K

_ R+ R . R, R
K_1+Rj:+Ri K = 1+R1N(1+§2N 2L )
RZN(1+§2R)
K=1+ 2N
R(1+4) K = (“ET:]*ET:(%’;—S:Z)

K = 14520 (14 (1 - fe)

1N



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
R, VW — K =1+ R,
! VWV ‘: >__VOUT R
Vin |
Determine the standard deviation of the voltage gain K
1N N Ry poroc = (KN - I)RIRPROC
K = Ky+(Ky —1)(%2—@—’;) And, since a common centroid layout
IS used,
Ron = Roweroc + Ropgrap T Rorryan R,rarap @Nd Rirgrap are correlated
R = Ripproc T Rigorap + Ririvar R prin = ( K, - 1) R ocrin

~ RZRPR R2R RAD RZRLVAR RIRPR RIR RAD RlRLVAR
K = KN+(KN—1)( T ) R,rivar @nd Ryriyar are uncorrelated



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
M K=1+_2
! VWV ‘ >__VOUT "R,
Vin 1

Determine the standard deviation of the voltage gain K

K~ K +(K _1) Ry reroc +RorGraD Y Rorrvar  Rorrroc TR rGRAD +RoRLVAR
— N N Ron Rin

(Ky =1 Rirproc H(Kn =1)Rirgrap +Rorvar Ry rproc + Ry rorap R RLVAR )

K = Ky+(Ky=1)( - - R
Since Ry =(Ky-1)Rqn

Ky-1)R +HKy—-1)R R R +R +R
K~ K +(K _1) (Ky 1rRPROC T\ BBy 1 RGRAD 2RLVAR __ LirPROC TR RGRAD 1Y RLVAR
N N (KN _1)R1N + RZN R1N

Ky—-1)R +HKy-1)R R +R R R
~ +( _ ) ( N LRPROC N LRGRAD "M RPROC 1RGRAD 2RLVAR _ “MRLVAR
K = KN KN I (|: (Kn—1)Rin Rin + Ron Rin

K+ (Ky —1)(R2F§ZAR = Rﬁjﬁ“) K not dependent on Rgproc !

K

112



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
F21 — AN —

L Vour K=1+F:Tf

IN

Determine the standard deviation of the voltage gain K

N R R
K = Kt (K — 1) (R — S )
~ 2 2 _
Recall: O, = \/0-2 +0.17 =0.22 (p was the pole of a dimensioned parameter)
Pnom
~ |1 1 2 2
O K = Ee— GRz_R + GRI_R
a N RaN RIN



Statistical characterization of local random
variations of resistors and capacitors

Theorem: If the perimeter variations and contact resistance are neglected,
the standard deviation of the local random variations of a resistor of area A is

given by the expression A
or =—=

R VA
A, is a constant (has dimensions of ym) and is not related to areal!

Theorem: If the perimeter variations are neglected, the standard deviation of
the local random variations of a capacitor of area A is given by the expression

A is a constant (has dimensions of ym) and is not related to area!

Note both of these expressions are independent of the value of R and C



Statistical characterization of local random
variations of MOS transistor parameters

Theorem: If the perimeter variations are neglected, the variance of the local
random variations of the normalized threshold voltage of a rectangular MOS
transistor of dimensions W and L is given by the expression

5 A%/TO A%,

@) = -0 2 =
Vr V]%N WL or as GL WL

Vin

Theorem: If the perimeter variations are neglected, the variance of the local
random variations of the normalized C.y of a rectangular MOS transistor of
dimensions W and L is given by the expression

2
2 — ACOX
7l Ty
CO)QV

Theorem: If the perimeter variations are neglected, the variance of the local
random variations of the normalized mobility of a rectangular MOS transistor
of dimensions W and L is given by the expression

2 p

O =
= WL

UN

where the parameters Ay are all constants characteristic of the process
(i.e. model parameters)



Statistical characterization of local random
variations of MOS transistor parameters

A — "\c
GR =-__ P 0£ - A
Re VA o

2 2 2

2 _ Acox 62 = Au cl = Avro
O-@ - 1148 Br WL i yv2 WL

C Vin Ty
OXN N

* The parameters A, Ac, A, Acox. and Ay are often termed “Pelgrom”

parameters and are part of the PDK of a process

Matching_properties of MOS transistors [PDF
MJM Pelgrom, ACJ Duinmaijer... - IEEE Journal of solid ..., 1989 - ieeexplore.ieee.org

The matching properties of the threshold voltage, substrate factor, and current factor of MOS
transistors have been analyzed and measured. Improvements to the existing theory are ...

Y Save 99 Cite Cited by 4397 Related articles Al 26 versions Sept 2024

» The effects of edge variations (but not roughness) on the variance of
resistors, capacitors, and transistors can readily be included (though not
precisely modeled) but for most layouts is dominated by the area
dependent variations
* There is some correlation between the model parameters of MOS transistors but
they are often ignored to simplify calculations



Can'’t precisely model this type of W and L

the four boundaries though the boundaries
themselves can be modeled as random

‘—‘ variations. Must maintain no variations on any of
variables.




Statistical Modeling of dimensionless
parameters - example

Example 1 R,

R1 — AN —

WD__VOUT K
V

IN

Determine the standard deviation of the voltage gain K

K ~ KN+(KN_1)(R2I§§;AR _Rllgi:lAR)
o = (Ky—1) |0, 00, Or =
RoN RIN Ry
1 1
~ (Ky—-1)A
GK ( " ) p\/ARZ +AR1

1 1
~ (Ky—-1)A
Ok ( N ) p\/(KN_l)AR1+AR1



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
R1 — AN —

L Vour K= 1*%

IN

Determine the standard deviation of the voltage gain K

1 1
~ (Ky—-1)A
GK ( N ) p\/(KN_l)AR1+AR1




Statistical Modeling of dimensionless

parameters - example

R
R1 — AN —

S T R

IN

Example 1

Determine the standard deviation of the voltage gain K

A
~ — 202
Ok —\/Aim\/KN(KN 1) A=01u  Ag=100u? GJ;N_M
01
o = E\/KN (Ky—1) =.001/Ky (Ky - 1)
oy =.001 1- 1
Ky N

 The standard deviation can be improved by increasing area but a 4X
increase in area is needed for a 2X reduction in sigma

* Note the standard deviation of the normalized gain is much smaller
than the standard deviation of the process variations



Statistical Modeling of dimensionless
parameters - example

Example 1
R

R>
— AN —

<

IN

o

| Vour R

Determine the standard deviation of the voltage gain K

o, =.001[1-

Kn

1

N

Determine the yield if the nominal gain is 10 +1%

K
K
K
KN

oy =.001, /1-1 =.00095
10

~ N(1, 0.00095)



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
— AN —
R1 K — 1+ 2

IN

Determine the yield if the nominal gain is 10 £1%
K

K ——1
— = N(1, 0.00095
Ky ( ) LT N(0,1)
0.00095
9.9 <K<10.1 K
-1
K
K _10< 2N <10 These are 10
99 < K S 1.01 .00095 sigma values !
N
The gain yield is essentially 100%
K Could substantially decrease area or increase

-01< — -1<.01
K

\ gain accuracy if desired



Statistical Modeling of dimensionless
parameters - example

Example 1 R,
R1 — AN —

L Vour K= 1*%

IN

Determine the yield if the nominal gain is 10 *1%
K

KN

.00095

-1 These are 10
<10 sigma values !

-10<

The gain yield is essentially 100%

What effect did the very large value of the process variance have on yield?

A,=.01um O ke = 0-2

RN oM

No effect !! This dimensionless parameter not dependent on process variations



Statistical Modeling of dimensionless

parameters - example

Example 2
R>
R1 — AN —

L Vour K= 1*%

IN

Determine the yield if the gain is to be 10 £1%

the area of R, is and both resistors have the same resistance

density and R, is comprised of K-1 copies of R, . Neglect variable
edge effects in the layout

R,

o =0.2

RPR ocC

Assume a commtroid layout of R, and R, has been used and

RNOM
Note this is simply a 10X reduction in area from previous example and an
increase in A, by a factor of 2.5



Statistical Modeling of dimensionless

parameters - example

Example 2 R
R1 — AN —

R TR

IN

Determine the standard deviation of the voltage gain K

Oy == \/KN(KN_I) A,=.025um Ag,=10um? O Rproc

RN oM

o 292 \/K ) =.0079,/K,, (Ky —1)

o, =.0079 /1- 1
Ke Ky

Note the standard deviation of the normalized gain is

independent of the very large O Roroc

RNOM



Statistical Modeling of dimensionless
parameters - example

Example 2
R

R>
— AN —

<

IN

o

| Vour R

Determine the standard deviation of the voltage gain K

Ok

Kn

=~.0079 |1-

1

N

Determine the yield if the gainisto be 10 1%

O

< =.0079, /1-i =.0075
o 10

K2 N(, 0.0075)
KN



Statistical Modeling of dimensionless

parameters - example

Example 2
R>

W L Vo K= 1*%

IN

Determine the yield if the nominal gain is 10 £1%

K K
= N(1, 0.0075) K
Ky N =~ N(0,1)
0.0075
9.9 <K <10.1 K
K - Have dropped from 10 sigma
- N to 1.33 si boundari
99 < £ <1.01 1.33< 0075 <1.33 o) sigma boundaries
Ky '
/ 2F0(1.33)-1 = 2*.9082-1 =0.8164
K

-.01< " -1< .01 Dramatic drop from 100% yield to about 82% yield!

N



Statistical Modeling of Filter Characteristics

The variance of dimensioned filter parameters (e.g. w,, poles, band edges, ...)
is often very large due to the process-level random variables which dominate

The variance of dimensionless filter parameters (e.g. Q, gain, ...) are often
quite small since in a good design they will depend dominantly on local random
variations which are much smaller than process-level variations

The variance of dimensionless filter parameters is invariably proportional to the
reciprocal of the square root of the relevant area and thus can be managed

with appropriate area allocation



Linearization of Functions of a Random Variable

 Characteristics of most circuits of interest are themselves random variables

» Relationship between characteristics and the random variables often highly
nonlinear

» Ad Hoc manipulations (repeated Taylor’s series expansions) were used to
linearize the characteristics in terms of the random variables
Y;YN+i(aixR[)
« This is important because if the random variables are uncorrelated the
variance of the characteristic can be readily obtained

n
2 o 2 2
o= E (al. GXR,-)
i=1

o Yii.i(afo;,)

Y
Y, i=1

I

« This approach was applicable since the random variables are small

* These Ad Hoc manipulations can be formalized and this follows



Formalization of Statistical Analysis

Consider a function of interest Y

Y:f(XlN,XZN,...an,:le,sza"-an):f([XN]’[XR] )

This can be expressed in a multi-variate power series as

[ .
v=f([X,] ’[XR])‘[XR][o]Jr;(a_i .xR”]Jrz{axéc

° leij]+
[y ][ ]={0] iy} Xe 0]

If the random variables are small compared to the nominal variables
)
SICO RIS A R
= Hlxy L[ xe]=[0]

If the random variable are uncorrelated, it follows that

2
) [@f } .l
ax Ri
) Ho]

J=1

i=1




Formalization of Statistical Analysis

Y:f(xlN,xZN,...an,:le,XZR,...an):f([XN]’[XR] )

Recall: o _ o x LET =(Sf )2 e
S 0 ) |y I Xy
Thus: . 2
2 f 2
LT Zﬂs [XNJ 'G;’;j

« Sensitivity analysis often used for statistical characterization of
filter performance

* This is often much faster and less tedious than doing the linearization
as described above though actually concepts are identical



\
5/'-/.. S
Nj)(((( L

Stay Safe and Stay Healthy !
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